Probing the Nanodomain Origin and Phase Transition Mechanisms in (Un)Poled PMN-PT Single Crystals and Textured Ceramics

نویسندگان

  • Aneta Slodczyk
  • Philippe Colomban
چکیده

Outstanding electrical properties of solids are often due to the composition heterogeneity and/or the competition between two or more sublattices. This is true for superionic and superprotonic conductors and supraconductors, as well as for many ferroelectric materials. As in PLZT ferroelectric materials, the exceptional ferro- and piezoelectric properties of the PMN-PT ((1-x)PbMg1/3Nb2/3O₃-xPbTiO₃) solid solutions arise from the coexistence of different symmetries with long and short scales in the morphotropic phase boundary (MPB) region. This complex physical behavior requires the use of experimental techniques able to probe the local structure at the nanoregion scale. Since both Raman signature and thermal expansion behavior depend on the chemical bond anharmonicity, these techniques are very efficient to detect and then to analyze the subtitle structural modifications with an efficiency comparable to neutron scattering. Using the example of poled (field cooling or room temperature) and unpoled PMN-PT single crystal and textured ceramic, we show how the competition between the different sublattices with competing degrees of freedom, namely the Pb-Pb dominated by the Coulombian interactions and those built of covalent bonded entities (NbO₆ and TiO₆), determine the short range arrangement and the outstanding ferro- and piezoelectric properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete set of material constants of Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3)single crystal with morphotropic phase boundary composition.

Using combined resonance and ultrasonic methods, a full set of material constants has been measured for morphotropic phase boundary (MPB) composition xPb(In(12)Nb(12))O(3)-(1-x-y)Pb(Mg(13)Nb(23))O(3)-yPbTiO(3) (PIN-PMN-PT) single crystals poled along [001](c). Compared with the MPB composition (1-x)Pb(Mg(13)Nb(23))O(3)-xPbTiO(3) (PMN-PT) single crystals, the PIN-PMN-PT single crystals have smal...

متن کامل

A complete set of material properties of single domain 0.26Pb(In(12)Nb(12))O(3)-0.46Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystals.

Pb(In(12)Nb(12))O(3)-Pb(Mg(13)Nb(23))O(3)-PbTiO(3) (PIN-PMN-PT) single crystals have been developed recently, which can increase the operating temperature by at least 20 degrees C compared to PMN-PT crystals. We have measured a complete set of material properties of single domain PIN-PMN-PT crystal, which is urgently needed in theoretical studies and electromechanical device designs using this ...

متن کامل

Growth and Characterization on PMN-PT-Based

Lead magnesium niobate—lead titanate (PMN-PT) single crystals have been successfully commercialized in medical ultrasound imaging. The superior properties of PMN-PT crystals over the legacy piezoelectric ceramics lead zirconate titanate (PZT) enabled ultrasound transducers with enhanced imaging (broad bandwidth and improved sensitivity). To obtain high quality and relatively low cost single cry...

متن کامل

High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications

Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33~2000 pC/N, kt~60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstan...

متن کامل

Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:Mn single crystals.

Mn modified rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT:Mn) single crystals poled along [011]C crystallographic direction exhibit a "2R" engineered domain configuration, with macroscopic mm2 symmetry. The complete sets of material constants were determined using combined resonance and ultrasonic methods, and compared to [001]C poled PIN-PMN-PT:Mn crystals. The thickness sh...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2010